
54



 0

 10

 20

 30

 40

 50

0 1 2 3 4 5 6 7 8 9 10
 0

 100

 200

 300

 400

 500

C
P

U
 u

tl
iz

a
ti
o
n
 (

%
)

Number of live containers

(a) Resource monitoring on Raspberry Pi 3

CPU usage
Memory usage

 0

 20

 40

 60

 80

 100

0 5 10 15 20
 0

 20

 40

 60

 80

 100

Time (s)

(b) Resource monitoring on T430 server

CPU usage
Memory usage

F
re

e
 M

e
m

o
ry

 (
M

B
)

F
re

e
 M

e
m

o
ry

 (
G

B
) 100

A
v
g
 C

P
U

 u
tl
iz

a
ti
o
n
 (

%
)

(b) Resource monitoring on T430 server

Figure 2: The resource consumption of live containers.

to applications or serverless functions. Our preliminary re-

sults show substantial performance improvement of various

applications in both cloud servers and edge devices.

2 HOW HOTC WORKS

Figure 1 shows the architecture of HotC. It acts as a mid-

dleware between the clients and the backend servers. When

new requests come, HotC always attempts to execute the

user code in an existing and free container. If it cannot �nd

an available container, HotC just starts a new one as usual.

After the container �nishes execution, it returns the results

back to the client side and HotC will then cleanup the con-

tainer and prepare for the next request. Such a design has

many bene�ts: First, it is simple and straightforward, which

does not involve disruptive changes to the existing archi-

tecture. Second, as the resource consumption mainly comes

from the application execution instead of container itself, it is

lightweight to maintain a group of live containers without in-

troducing much overhead. Lastly, reusing the same container

runtime can o�er hot cache and less translation lookaside

bu�er (TLB) �ushing, which can signi�cantly improve the

resource utilization and application performance.

3 PRELIMINARY RESULTS

Overhead. We �rst analyzed the overhead of HotC on re-

source usage. Figure 2 plots the CPU and memory usage

monitoring on Raspberry Pi and physical server. First, we

varied the number of live containers and measured the re-

source consumption. As shown in Figure 2(a), the number of

live containers does not have an obvious impact on the avail-

able resource. The CPU usage increased by less 1% (ten live

containers) compared to that without containers. Similarly,

the memory footprint due to the di�erent number of live

containers is also insigni�cant. For instance, the memory

usage increased by 0.7MB for each individual live container.

The majority of resource consumption comes from the ap-

plications instead of the container itself, which left immense

potential to keep live containerized runtime to address the

cold start latency. We also measured the resource change

during a containerized application lifecycle. As shown in

Figure 2(b), we started a Cassandra database in one container

 0

 1

 2

 3

 4

 5

 6

 7

v3-app TF-API-app

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

(a) Image recognition app on T430

without HotC
with HotC

 0

 10

 20

 30

 40

 50

 60

v3-app TF-API-app

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

(b) Image recognition app on Raspberry Pi

without HotC
with HotC

Figure 3: The image recognition application execution

time w/o and w/ HotC.

at 6th second to handle some user requests and then stopped

it at 13th second while keeping the container still live. Cas-

sandra database is a heavy workload which executes the

database on the Java virtual machine. Compared to the appli-

cation resource consumption, the cold container overhead

cannot be neglected during execution.

Startup andExecutionTime.Next, we evaluated the startup

time of two image recognition applications with HotC. One

was implemented in Python and built on Google inception-

v3 model, which trained 1000 categories on the ImageNet

dataset (denoted as v3-app). Another was implemented in

Go through Tensor�ow APIs to perform image recognition

(denoted as TF-API-app). The version of Tensor�ow is 1.13.

All the applications were executed inside Docker containers.

The results shown were the average of ten runs. As Fig-

ure 3(a) shows, the execution time of v3-app and TF-API-app

reduced by 33.2% and 23.9% respectively compared to the

that without HotC. The performance improvement is due to

the e�cient reuse of existing container runtime. Similarly,

we also evaluated the performance on Raspberry Pi. Com-

pared to the physical servers, Raspberry Pi has more resource

constrains and is sensitive to the overhead. Compared to the

physical servers, the normal execution time of the same ap-

plication prolongs more than 10 times inside edge devices

and makes the cold start impact less signi�cant among the

total execution time. However, as depicted in Figure 3(b),

HotC still helped reducing the execution time of v3-app and

TF-API-app by 26.6% and 20.6%, respectively.

REFERENCES
[1] 2012. How one second could cost amazon 1.6 billion in sales. http://bit.ly/

1Beu9Ah.

[2] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R Das.

2017. Improving User Perceived Page Load Times Using Gaze.. In

Proceedings of the 14th USENIX Symposium on Networked Systems Design

and Implementation (NSDI).

[3] Kun Suo, Yong Zhao, Wei Chen, and Jia Rao. 2018. An Analysis and

Empirical Study of Container Networks.. In Proceedings of IEEE Interna-

tional Conference on Computer Communications (INFOCOM).

[4] Kun Suo, Yong Zhao, Wei Chen, and Jia Rao. 2018. vNetTracer: E�cient

and Programmable Packet Tracing in Virtualized Networks. In Pro-

ceedings of International Conference on Distributed Computing Systems

(ICDCS).

55


